偏差値の計算からスケールの標準化を理解する

スポンサーリンク

偏差値とは?

偏差値でわかるのは、相対的な自分の位置です。

$$偏差値=\frac{x-\bar{x}}{σ} \times 10 + 50$$

偏差を計算する

あるデータ値と平均値の差を偏差といいます。

$$偏差=x-\bar{x}$$

データから平均値を引くことで、データが標準化され、標準化されたデータの平均値が0になります。

偏差が標準偏差の何個分かを計算する

自分の点数の偏差を標準偏差1単位あたりの偏差に変換します。

標準偏差1単位あたりの偏差を標準化変量といい、偏差が平均値から標準偏差の何個分離れているかを計算します。

$$標準化変量=\frac{x-\bar{x}}{σ}$$

標準化変量は、平均点を0、標準偏差を1としたときの標準正規分布で、自分の点数の位置を考えます。

標準正規分布の中で自分の位置を確認する

標準化変量は偏差を標準偏差で割るので、自分の点数が平均値と同じであった場合、標準化変量は0となります。

基準変化量から偏差値を計算する

基準変化量から相対的な自分のレベルはわかるのですが、得点らしい数値にするために、数字を大きくすると、偏差値になります。

$$偏差値=\frac{x-\bar{x}}{σ} \times 10 + 50$$

平均値0、標準偏差1の分布で基準化変量を見るのではなく、平均値を50、標準偏差を10と設定した分布の中で見る値が偏差値です。

コメント

タイトルとURLをコピーしました